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A method combined the self-consistent field theory (SCFT) for the rigid rod with the Helfrich curvature
elasticity theory for the vesicle has been developed for studying the shape of vesicles anchored by rigid rod.
Both the deformation of the vesicle and the density distribution of rod segments can be obtained. Because of
the vesicle’s impenetrability for the rod segments and the decrease of the available space for the rod orientational
configurations, the anchored rod segments exert the inhomogeneous entropic pressure on the vesicle and
induce the change of vesicle shape. The interaction between the rod segments and the vesicle membrane
exerts an extra tension to the membrane. Thus the interaction between the vesicle membrane and the rod
segments, the rod length, and the bending rigidity of vesicle are investigated as the important factors to the
shape transformation of the vesicle and the density distribution of rod segments. This method can be extended
to more complicated and real biological systems, such as polymers with different topological architectures/
vesicle, multiple chains/vesicle, protein inclusions, etc.

1. Introduction

Membranes and vesicles anchored by polymers provide
simple model systems of biological membranes such as the
plasma membrane of the cell. These biological and biomimetic
membranes consist of a lipid bilayer. The extracellular part of
the cell membrane is decorated by glycolipids and glycoproteins,
which protect the cell against mechanical and chemical attack.1,2

These “ornaments” are usually semiflexible or even rigid
macromolecules. The process of budding and fission of cell are
plausibly induced by these proteins. As a simple model of
biological membranes, in recent years, tremendous interest has
been focused on the polymer anchored vesicles. Numerous
experiments have been carried out on the system of polymer
chain anchored fluid vesicles, and some bio-related processes
have been observed such as budding, increnation, pearling,
tubulation, coiling, etc.3,4

Polymers can usually be anchored onto membranes by two
kinds of methods: one is by a lipid anchor that is covalently
bound to a water-soluble polymer; the other is by hydrophobic
side groups of the polymer which sticks onto the bilayer with
physical interaction. For one anchored polymer chain, its overall
loss of conformation entropy arising from the impenetrable
membrane surface is only a fewkBT, which is less than the
anchoring energy (∼20 kBT), thus this anchored course can be
easily achieved. For this reason, this kinds of biomimetic system
can be easily investigated.5,6

There are many theoretical methods that have been devoted
to study the subtle shape changes of the polymer chains/
membrane compound system, such as theoretical analysis or
Monte Carlo simulations.7-16 Their results revealed that the
chain anchoring can induce local inhomogeneity of the bending
rigidity and spontaneous curvature of the membrane. In reality,
when the polymer chain comes close to the membrane, the
conformational entropy of the polymer is reduced due to the
restriction of the available activity space, the anchored chain

segments exert an inhomogeneous entropic pressure on the
vesicle, and the shape of membrane is transformed. Unfortu-
nately, these models ignored the fact that the polymer chain
could also affect the tension of membrane via the adsorption
or repulsion interaction between polymer segment and mem-
brane, and the membrane tension is also known as partly
suppressing or aggrandizing the membrane shape fluctuation.
In addition, most of theoretical studies are limited to the case
of flexible polymer chains anchored on a flat membrane of
infinite size. However, for vesicles, due to the closure of the
membranes, additional effects not present in planar membranes
show up. Therefore, the theories developed for planar membrane
can hardly be used to interpret the experimental results on the
shape transformation of vesicles of finite sized and closed
membrane.

Recently, we have developed a method that combines self-
consistent-field theory (SCFT) for Gaussian chain and Helfrich
curvature elasticity theory for fluid membrane to determine the
stable and metastable shapes of flexible chain anchored vesicle.17

However, for many real cell membranes, the “ornaments” that
anchored on the membrane usually are semiflexible or even rigid
macromolecules. Therefore, we believe that the system of rod-
anchored vesicle has more biological relevance. Although, the
theoretical method developed previously17 has also been ex-
tended to investigate the deformation of a rod-anchored flat
membrane of infinite size,18 the behaviors of rod-anchored
vesicle still need to be explored.

In this paper, we would like to extend the method developed
previously17 to the case of rod-anchored vesicle and explore in
detail the rod anchoring induced shape deformation of vesicle.
The paper is organized as follows. In the next section, the model
and algorithm for studying the system of rod-anchored vesicle
will be introduced. In section 3, the effects of interaction strength
between the vesicle and the rod, the rod length, the surface
tension, and the bending rigidity of the membrane on the vesicle
shapes are discussed based on the calculated results. In the last
section, we draw conclusions and make some remarks.* Corresponding author. E-mail: ylyang@fudan.ac.cn.
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2. Model and Algorithm

The model of a single rod-anchored vesicle is schematically
drawn in Figure 1. We assume that the rod can freely rotate
around the pintle at one end of the rod. In the system, there are
ns solvent molecules and a rigid rod with one end anchored to
outside or inside vesicle wall. The rod consists ofNp segments
of lengthb. The diameter of the rod and the size of the solvent
are also taken to be the unit lengthb. In general, the thickness
of the lipid bilayer is about 4 nm, and the lateral size can extend
up to the µm range. It is therefore justified to neglect the
thickness and to model the vesicle membrane mesoscopically
as a two-dimensional elastic surface. We assume that the
membrane is impenetrable to the rod segments. The system is
assumed to be homogeneous and incompressible with the
reference densityF0. Defining the solvent density operator as

F̂s(r) ) ∑i)1
ns δ[r - Rs

i ], rod density operator asF̂p(r) ) ∫0
Np

dτδ(r - Rp(τ)) ) ∫ dnR ∫0
Np dτδ(r - τnR - Rm(0, 0)), where

nR is a unit vector along the rod axes that can be written as
nR(φ, θ) (φ ∈ [0, 2π) andθ ∈ [0, π)). It implies that the rod
can freely rotate around the anchored pivot. The partition
function of such a system can be written as

whereN is a constant,â ) 1/kBT, and∫ DR denotes functional
integration over all the configurations of solvents, rod, and fluid
membrane.Rs

i and Rp(τ) denote the spatial positions of the
solvent moleculei and the segmentτ of the rigid rod,
respectively.Rm(u, V) denotes the spatial position of the
membrane andu, V are curvilinear coordinates in the membrane
surface.r ∈ Vin[Rm(u, V)] or r ∈ Vout[Rm(u, V)] denotes thatr is
inside or outside the volume enclosed by the vesicle membrane,
respectively. The firstδ-function ensures the incompressibility
constraint, and the thirdδ-function guarantees that the membrane
is impenetrable by rod.Hint denotes the interaction Hamiltonian
which includes interactions between the rod segments and
solvent molecules and the membrane, etc. Hence,Hint ) Vps +
Vpm + Vsm, which can be written asâVps ) ø ∫ drF̂p(r)F̂s(r) for
rod/solvent,âVpm ) ν I dAF̂p(r ∈ A[Rm(u, V)]) for rod/membrane
andâVsm ) µ I dAF̂s(r ∈ A[Rm(u, V)]), whereø andν, µ are
the Flory-Huggins interaction parameters of rod/solvent, rod/
membrane, and solvent/membrane pairs, respectively.A[Rm(u,
V)] represents the surface of the closed vesicle membrane. The
Hamiltonian of the semiflexible polymer can be written as19

where lp is the persistent length, and∂2Rp(τ)/∂τ2 is the local
curvature of the semiflexible chain. A rigid rod is the limit
configuration of semiflexible chain. For a rigid rod,∂Rp(τ)/∂τ
is a constant, and∂2Rp(τ)/∂τ2 ) 0 and its persistent lengthlp .
Npb.19,20 It is reasonable to assumeHp

0[Rp(τ)] ) constant. The
Hamiltonian of the vesicle has been proposed by Ou-Yang and
Helfrich:21

whereH andc0 are the local mean curvature and spontaneous
curvature of the fluid membrane, respectively.κ is the bending
rigidity of the membrane,λ can be considered as the tensile
stress acting on the membrane, and∆p ) pout - pin is the
pressure difference across the membrane.

Following the standard procedure of the SCFT,22 by introduc-
ing external auxiliary fieldsωp and ωs, which are the self-
consistent molecular fields conjugated to the collective densities
Fp andFs, and the Lagrangian multipliersê for the incompress-
ibility of the system as well asú for the impenetrability of the

Figure 1. Schematic illustration of one end of a rigid rod with length
Npb anchored on an vesicle at (r ) 0, h(r) ) 0). (a) 2D illustration, (b)
2D coordinate. The vesicle height atr is h(r). Φ is the azimuthal angle,
andΨ is the angle between the tangent to the contour and ther axis.

¥ ) N
1

ns!
∫ ∏

i)1

ns

DRs
i ∫ DRp(τ)e-âHp

0[Rp(τ)]

∫ DRm(u, V)e-âHm
0 [Rm(u,V)]e-âHint

∏
r

δ[F̂p(r) + F̂s(r) - F0]δ(Rm(0, 0)-

Rp(0))δ[∫r∈Vin[Rm(u, V)] drF̂p(r)] (1)

Hp
0[Rp] ) 3

2b2 ∫0

Np dτ[∂Rp(τ)

∂τ ]2

+
lp
2 ∫0

Np dτ[∂2Rp(τ)

∂τ2 ]2

(2)

âHm
0 [Rm] ) κ

2
IA∈Rm(u,V) dA(2H + c0)

2 + λIA∈Rm(u,V) dA +

∆p∫r∈Vin[Rm(u,V)]
dr (3)
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membrane, thus eq 1 can be rewritten as

with the free energy functionalâF defined as

whereη ) ν - µ. In eq 5,Qp{ωp} denotes the partition function
of the single rod in the molecular fieldωp with one end anchored
at point Rm(0, 0), Qs{ωs} is the partition function of solvent
molecules treated as only one spherical segment in the molecular
field ωs. These partition functions can be expressed in the
following forms:

The partition functionQp for rigid rod can be easily obtained
without solving the diffusion equation as Gaussian chain, similar
to solvent molecules but to occupyNp segments with spatial
orientational dependence.

To obtain the stable or metastable state of the system,
minimizing the free energy with respect toFp, Fs, ωp, ωs, ê, ú,
and results in the following self-consistent equations for the
rod and solvents:

and following the standard procedure of the functionalF
minimization for fluid membranes,23 we obtain the shape
equation of the vesicle in the presence of rod:

wheren‚3F(r ∈ A[Rm]) denotes the concentration gradient of

the rigid rod segments along the normal direction on the
membranen, andK is the Gaussian curvature of the membrane.

Compared with the general shape equation of vesicles without
rod anchoring, eq 15, derived by Ou-Yang and Helfrich:21,23

the physical implication of eq 14 is manifest. The extra pressure
and tensile stress terms appear in eq 14, which is the same with
the shape equation of the system of Gaussian chain-anchored
vesicle.17 The extra pressureúFp(r ∈ A[Rm]) originates from
the reduction of the rod conformation entropy due to the spatial
confinement of the rod by the impenetrable vesicle membrane,
and it can be named as inhomogeneous entropic pressure. This
result coincides with the mean-field analysis by Bickel and
Marques16 for an impenetrable fluid membrane ornamented with
grafted chain. The extra tensile stressηFp(r ∈ A[Rm]) comes
from the interaction of the rod segments onto the vesicle
membrane, which exerts extra inhomogeneous tensile stress
acting on the membrane. This inhomogeneous tension term
simply reflects that if the membrane adsorbs the chain, it reduces
the tensile stress; thus, the membrane tends to be extended to
decrease the free energy. In addition, the interaction of rod with
the membrane also results in additional pressureηn‚3Fp(r ∈
A[Rm]), which also reflects the membrane tends to contact more
rod segments if it adsorbs rod segments.

As shown in Figure 1b, the shape equation can be solved by
using the algorithm of Seifert et al. for an axial symmetric
vesicle.24 We use the arclengths along the contour and the
azimuthal angleφ as coordinates. The shape is then determined
by the tilt angleΨ(s), as defined in Figure 1b. Moreover the
coordinatesr andh are perpendicular and parallel to the axis
of symmetry, respectively. In the numerical simulations, the box
size is 5× 20 with ∆h ) 0.05 and∆r ) 0.05, and set∆τ )
0.05 andb ) 0.05. The numerical scheme we used is as follows.
First we guess an initial vesicle shape (such as sphere), and
then the self-consistent eqs 8-14 are solved to obtainFp(r, h).
The obtainedFp(r, h) is then inserted into eq 14 for calculating
the new shape of the vesicle under the influence of the anchoring
rod. These steps are repeated until the convergence conditions
have been reached. Then the thermodynamic stable or metastable
state for the system of rod-anchored vesicle is obtained.
Throughout this paper, the solution of shape equation is obtained
by comparing different energies of possible shapes, and the
shape with local minima energy is selected to be the resulting
one. In addition, because the surface area of vesicle will not
change dramatically in the biological system and experiments,
most of calculations are performed under fixed surface area.
Given fixed surface area (A0) of vesicle, search for the
appropriateλ using successive over relaxation method and the
iterative procedure ends with the additive constraint of (A -
A0)/A0 meeting the convergence conditions. The rod and the
vesicle both have their lengths scales in units ofb and their
energies scales in units of the bending constantkBT, so all the
parameters are dimensionless, and it can be transformed back
to the real physical values:κ f κkBT, λ f λkBT/b2, ∆p f
∆pkBT/b3, η f ηkBT/b, ø f økBTb3, ú f úkBT. Throughout
this paper, the chosen parameters,λ ) 10-4-10-2kBT/nm2, κ

) 1-25kBT, η ) -0.1 to 0.1kBT, are all in the reasonable order
of magnitude in real experiments.23,25,26

It should be noted that the justification for the self-consistent
approximation is that a single chain encounters many more of
its neighbors than itself and therefore exists in a mean field
generated by the presence of its neighbors. In our system, SCFT

¥ ) ∫ DRm∫ DFp∫ Dωp∫ DFs∫ Dωs

∫ Dê ∫ Dúe-âF {Rm,Fs,Fp,ωs,ωp,ê,ú} (4)

âF ) -ln Qp[ωp] - ns ln Qs[ωs] +

∫ dr[øFsFp - ωsFs - ωpFp + ê(Fp + Fs - F0)] +

κ

2
IA∈Rm(u,V) dA(2H + c0)

2 + λIA∈Rm(u,V) dA +

∆p∫r∈Vin[Rm]
dr + ηIA∈Rm(u,V) dAFp + ú ∫r∈Vin[Rm]

drFp (5)

Qs{ωs} ) ∫ dr exp{-ωs(r)} (6)

Qp{ωp} )

∫ DRp exp{-∫0

Np dτω(Rp(τ))}δ(Rp(0) - Rm(0)) (7)

ωp(r) ) {η/b + øFs(r) + ê(r) r ∈ A[Rm]
ú + øFs(r) + ê(r) r ∈ Vin[Rm]
øFs(r) + ê(r) r ∈ Vout[Rm]

(8)

ωs(r) ) øFp(r) + ê(r) (9)

Fp(r) ) 1
Qp

exp{-∫0

Np dτωp(Rp(τ))}δ(r - Rp(τ)) (10)

Fs(r) )
ns

Qs
exp{-ωs(r)} (11)

F0 ) Fp(r) + Fs(r) (12)

0 ) ∫r∈Vin[Rm]
drFp(r) (13)

{∆p + úFp(r ∈ A[Rm]) + ηn·∇Fp(r ∈ A[Rm])} -

2H{λ + ηFp(r ∈ A[Rm])} + 2κ∇2H +

κ(2H + c0)(2H2 - c0H - 2K) ) 0 (14)

∆p - 2λH + 2κ∇2H + κ(2H + c0)(2H2 - c0H - 2K) ) 0
(15)
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is assured to be valid, and in this case, a single polymer chain
undergoes a mean field generated by the solvent monomers,
membrane, and chain itself. Furthermore, in some cases, for
example, when the interaction between rod segments and
membrane can be ignored, the distribution of rod segment is
spatially uniform, the density distribution of rod segment and
thus the vesicle shape can be solved exactly without the SCFT.
In our system, however, due to introduction of the interaction
between rod and membrane, the spatial distribution of rod will
not be uniform any more, and the rod segment except the anchor
touches the membrane transiently, resulting in randomly dis-

Figure 3. Transformation of vesicle shape after anchored rod. In all
cases, we usec0 ) 0, ø ) 0, η ) 0, κ ) 5, ∆p ) 0.0012,λ ) -0.02698.
The rod length isNp ) 100.

Figure 4. Typical stationary solutions of vesicle anchored by rigid
rod inside, including shapes of the vesicle and segment distributions
of the anchored rod. The shape of the vesicle is represented by the
solid curve, and the density of the polymer chain is drawn in gray
scale on a logarithmic scale. The radial (horizontal) and height axes
are scaled byNb. In all cases, we useNp ) 100,c0 ) 0, ø ) 0, η )
0. (a)κ ) 10, ∆p ) 0.0024,λ ) -0.04. (b)κ ) 15, ∆p ) 0.0036,λ
) -0.06. (c)κ ) 5, ∆p ) 0.0012,λ ) -0.024. (d)κ ) 10, ∆p )
0.0024,λ ) -0.036. (e)κ ) 2, ∆p ) 0.00048,λ ) -0.0096. (f)κ )
2, ∆p ) 0.00048,λ ) -0.008.

Figure 2. Typical stationary solutions of vesicle anchored by rigid
rod outside, including shapes of the vesicle and segment distributions
of the anchored rod. The shape of the vesicle is represented by the
solid curve, and the density of the polymer chain is drawn in gray
scale on a logarithmic scale. The radial (horizontal) and height axes
are scaled byNb. In all cases, we useNp ) 100,c0 ) 0, ø ) 0, η )
0. (a)κ ) 15, ∆p ) 0.0036,λ ) -0.027. (b)κ ) 10, ∆p ) 0.0024,
λ ) -0.02. (c)κ ) 3, ∆p ) 0.00072,λ ) -0.0132. (d)κ ) 5, ∆p )
0.0012,λ ) -0.02. (e)κ ) 2, ∆p ) 0.00048,λ ) -0.008. (f)κ ) 2,
∆p ) 0.00048,λ ) -0.0096. (g)κ ) 1.5,∆p ) 0.00036,λ ) -0.006.
(h) κ ) 5, ∆p ) 0.0012,λ ) -0.0156.
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tributed touching point. Therefore, in this regard one of the
efficient and popular techniques to obtain the probability
distribution of rod segments is the self-consistent field method.

3. Results and Discussion

3.1. ø ) 0 and η ) 0. The spherical vesicle are usually
disturbed by temperature and osmotic pressure, and it can take
various shapes. According to the index of spherical harmonic
(l), l ) 1 denotes spherical vesicle andl ) 2 denotes that vesicles

have 2-fold symmetry, etc. Here, we should mention that, due
to the disturbance of the anchored rod, the shapes usually cannot
be described by a single index of spherical harmonics. Therefore,
in the following we approximately label the shape by its
dominate index of spherical harmonics (i.e.,l ∼ 2, l ∼ 3, etc.).
In principle, eq 14 has a complete set of solutions for given
parameters (λ, ∆P, c0, etc.). These solutions of shape eq 14
that are the stationary shapes of vesicle contain local minima
or saddle points in the space of all shapes. In this part, we only
investigate the simplest casec0 ) 0 without any interaction
potential (i.e.,η ) 0 andø ) 0). As shown in Figure 2, we can
obtain various stationary shapes, for example, oblates, prolates,
stomatocytes, and more complex shapes (l∼ 3, l ∼ 4). Figure
3 shows the transformation of vesicle after anchored rod. Note
that due to the local disturbing of the rod, the sphere becomes
unstable and transforms to the shape of starfish. This behavior
has been observed in the system of vesicle formed with SOPC
when PEG-Flu-Chol solution was introduced.27 For the other
shapes (l > 2) of vesicle, their shapes are also adjusted
accordingly due to the rod anchoring.

In the real biological systems, some proteins, such as
peripheral proteins, could also exist inside the biological cell
membranes. These proteins can affect the shape of biological
membranes either. In this case, vesicle is deformed because the
anchored rod segment exert the inhomogeneous entropic pres-
sure on the inner side of membrane. As shown in Figure 4,
there are various stationary shapes of vesicle also. Similar to
the outside anchoring situation, the sphere vesicle becomes
unstable and thus cannot be observed any more; other shapes
(l J 2) of vesicle are adjusted accordingly. The behavior of
vesicle deformation is different for the same set of membrane
parameters when the rod anchored outside and inside the vesicle.
As shown in Figure 5, for the starfish shaped vesicle (l ∼ 3),
the vesicle shape is elongated along the axis of axial symmetry
h and the membrane near the south pole is adjusted to be more

Figure 5. Shape of vesicle anchored by rigid rod outside (ú > 0) and
inside (ú < 0). Np ) 100,κ ) 10.0,c0 ) 0, ∆p ) 0.0024,ø ) 0, η )
0, andλ ∼ -0.045 is set to keep the area of vesicle to be constant.

Figure 6. Shapes of the vesicle anchored by a rigid rod (a)κ ) 10.0,
Np ) 100,c0 ) 0, ∆p ) 0.0024,λ ) 0.004,ø ) 0, η ) 0. The density
of the rigid rod is drawn in gray with the logarithmic scale. The shape
of vesicle is represented by solid curves, and the axis are scaled by
Npb. (b) The density profile of the rod along the vertical directions (r
) 0). In the inset, the density profiles are drawn in logarithm scale.

Figure 7. Pearling transition of tubular vesicles due to rod anchoring.
The tubular vesicle shown in the left panel is obtained with param-
eters: κ ) 10,c0 ) 0, ø ) 0, η ) 0, ∆p ) 0.0024,λ ) -1.5(∆p/2)2/3.
The pearling vesicle in the right panel is with the same parameters,
but a rod with chain lengthNp ) 100 anchored. The inset depicts the
pore between the bottom pearl and its neighbor.
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flat when rod is anchored outside. In contrast, the vesicle is
elongated perpendicular to the axis of symmetryh and the
membrane near the south pole become much more steep when
the rod is anchored inside. The intrinsic reasons are that the
vesicle membrane cannot be penetrated by the rod, and resulting
in the inhomogeneous entropic pressure exerted on the mem-
brane. The final shape of this system is the balance between
the bending and tension energies of vesicle and the entropic
pressure exerted by the rod. To achieve larger space and
maximize the orientational entropy of rod, the vesicle is
elongated along the axis of symmetryh when the rod is
anchored outside. Due to the same reason, the vesicle is
elongated perpendicular to the axis of symmetryh when the
rod is anchored inside. No matter if the rod is anchored outside
or inside, the rod anchoring exerts the perturbation at small
length scales and induces local inhomogeneous entropic pres-
sure; the shape of vesicle would adjust and adopt the state of
lower energy.

Figure 6 shows the shapes of the rod-anchored vesicle and
the density of rod segment for the case of l∼ 3. Since the size
of the rigid rod (Rp ) Npb) is much larger than that of Gaussian
chain (Rp ) xNpb) with the same chain length, the contact
distance between the rod and the vesicle is also much longer.
Due to the rigidity of the rod and the continuity of the vesicle
curvature, there is an empty space where no rod segments can
be found near the anchoring position, as shown in Figure 6.
The density of rod segment contacted to the vesicle membrane
is much lower than that of Gaussian chain-anchored vesicle.
According to the scaling theory,28 inhomogeneous pressure was
mainly exerted on vesicle near the anchoring position due to
highly localized conformation fluctuations of flexible polymers.
However, in the case of rod anchoring, not all rod segments
could have the opportunity to contact to the membrane and to
exert the entropic pressure on it. As shown in Figure 6, the
densities drop suddenly from the anchoring position and then
decay smoothly further away. The density of the rod segments

Figure 8. Shape of the vesicle anchored by the rigid rod for different interaction parameterη with κ ) 10.0,Np ) 100,c0 ) 0, ∆p ) 0.0024,ø
) 0, andλ ∼ -0.05 is set to keep the area of vesicle to be constant. The shape of the vesicle is represented by solid curves, and the density of the
polymer chain is drawn in gray scale of its shape color map by logarithm scale. The density of rod on membrane near grafted point is drawn on
the right side.
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along the orientation of rod is shown in Figure 6b. Note that
the density of rod segments is exponentially falling with the
exponent of-2 from the anchoring position to the rod end.
When there is no any interactions between the vesicle membrane
and the rod, the density of rod segment meets the scaling
behavior of

where r and h represent the space position in the cylinder
coordinate system.

Tubular vesicle is common in nature, but it is not an stationary
solution for the case of only considering the elastic energy.29

When it is anchored by polymers, polymers will induce pearling
instability.17 Tsafrir et al.4 have observed the pearling of vesicle
formed with SOPC when dextran was introduced. In their
opinion, the pearling instability is induced by the altering of

the spontaneous curvature originated from the anchored polymer
chain on the outer layer of the vesicle membrane. For a vesicle
membrane withc0 ) 0 andλ ) -1.5(∆P/2)2/3, the vesicle can
form an infinitively long tubular with radius (∆P/2)-1/3.24 Similar
to experiments, if such a tubular vesicle is anchored by a rod
with the same parameters, it becomes unstable and transforms
to a shape comprising a chain of pearl with radius close to that
of the original tubular, and each pearl is connected with its
neighbor through a narrow pore, as shown in Figure 7. Because
the spontaneous curvature is a constant (c0 ) 0) in calculation,
the change of spontaneous curvature of vesicle may not be the
only reason for pearling instability, and the in-
homogeneous entropic pressure originated from the anchored
rod segment is another plausible reason.

3.2. Effect of ø. The Flory-Huggins interaction parameter
ø between the rod and the solvent does not explicitly appear in
eq 14. However, the distribution of polymer segments will be
affected by the quality of solvent, especially poor solvent.

Figure 9. Shape of the vesicle anchored by the rigid rod for different interaction parameterη with κ ) 10.0,Np ) 100,c0 ) 0, ∆p ) 0.0024,ø
) 0, andλ ∼ -0.05 is set to keep the area of vesicle to be constant. The shape of the vesicle is represented by solid curves, and the density of the
polymer chain is drawn in gray scale of its shape color map by logarithm scale. The density of rod on membrane near grafted point is drawn on
the right side.

F(r, h) ∝ 1

(r2 + h2)
, (r2 + h2 < (Npb)2)
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Therefore, the interaction parameter implicitly changes the shape
of vesicle through the distribution of chain segments. This has
been verified for a Gaussian chain-anchored vesicle.30 However,
this effect is very small compared to other parameters. For the
rod-anchored vesicle, this effect is even more insignificant since
the rod is rigid and the distribution of the rod segment is almost
not influenced within the reasonable range ofø. Indeed,
increasing solvent-rod exclusive interaction causes a slight
change of the vesicle shape because, in a bad solvent (ø > 0),
the rod prefers to stay close to the membrane. Different from
the flexible chains, due to the rigidity of the rod, the quality of
solvent barely affects the distribution of rod density, thus its
effect on the shape of vesicle can be ignored.

3.3. Effect of η. The interaction between rod segment and
membrane can be described by a Flory-Huggins type of
parameter,η. In Figures 8 and 9, the shapes of the rod-anchored
vesicle and the distribution of rod segments are presented for
various interaction strengthη. η > 0 and η < 0 denote the
repulsion and adsorption interactions, respectively. In the
following calculation, the surface area of the vesicle is kept
constant. As shown in the insets of Figures 8 and 9, the
distribution of rod segments is changed when the interaction
between the rod and the membrane is switched on. The
probabilities of the rod segments appearing near the vesicle
membrane and the density of rod segment on the vesicle

Figure 10. Shape of the rod-anchored vesicle for different rod length
Np with η ) 0. κ ) 10.0,N ) 100,c0 ) 0, ∆p ) 0.0024,ø ) 0, and
λ ∼ -0.05 is set to keep the area of vesicle to be constant. The density
of rod on membrane near grafted point is drawn on the right side.

Figure 11. Shape of the rod-anchored vesicle for different rod length
Np with η * 0. κ ) 10.0,N ) 100,c0 ) 0, ∆p ) 0.0024,ø ) 0, and
λ ∼ -0.05 is set to keep the area of vesicle to be constant. The density
of rod on membrane near grafted point is drawn on the right side.
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membrane increase with decreasingη. Accordingly, the vesicles
adjust its shape to minimize the free energy for the altered
distribution of rod segments density whenη < 0. Whenη < 0,
the density of rod segment on the vesicle surface and the
inhomogeneous entropic pressureúFp(r ∈ A[Rm]) increase with
adsorption strength|η|, and the shape of the vesicle changes
remarkably. On the contrary, whenη > 0, the shape of vesicle
scarcely changes due to the reduction ofFp(r ∈ A[Rm]). More
interestingly, it is found that the effect ofη is strongly dependent
on the shape of vesicles (differentl). For example, for the case
of l ∼ 4 shown in Figure 9b, bothη > 0 andη < 0 only induce
a very small shape deformation. This is due to the rigidity of
the rod and the character of vesicle shape. For the case ofl ∼
4, the segment density on the membrane,Fp(r ∈ A[Rm]), is much
lower than the cases ofl ∼ 2 or l ∼ 3. This behavior is very
different from the Gaussian chain-anchored vesicle.17 Because
of the rigidity of the rod and the continuity of the vesicle
curvature, there is an empty space between vesicle and rod.

Hence, the density of rod segments on the vesicle surface is
much lower than Gaussian chains. Especially, the density near
the anchored position decrease dramatically. One should notice
that, for the case ofη < 0, the inhomogeneous entropic pressure
úFp(r ∈ A[Rm]) increases and the extra tensile stressηFp(r ∈
A[Rm]) decreases with increasing|η|. In addition to that, the
term of ηn‚3F(r ∈ A[Rm]) usually counteracts the inhomoge-
neous entopic pressure termúFp(r ∈ A[Rm]) for rod-anchored
vesicle. This is another key factor should be taken into account
for the vesicle shape transformation.

3.4. Effect of Rod Length.The effect of rod length on the
vesicle shapes are shown in Figures 10 and 11. In general, with
increasing the rod lengthNpb, the rod will exert the inhomo-
geneous entropic pressure to the vesicle in a larger area.
However, as shown in Figure 10a-d (l ∼ 2, 3), except for panel
d (l ∼ 4), the shape of vesicle is barely affected by the length
of rod. It is clear that the effect of rod length is very small
when the vesicle membrane near the anchoring point is convex.

Figure 12. Shape of the rod-anchored vesicle for different bending rigidityκ. The parameters used areNp ) 100,c0 ) 0, ∆p ) 0.0024,ø ) 0,
andλ ∼ -0.05 is set to keep the area of vesicle to be constant.
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In contrast to that when the vesicle membrane near the anchoring
point is concave, such asl ∼ 4, the orientational entropy is
largerly reduced for longer rod; thus, the shape of vesicle will
be influenced stronger.

However, the rod length will influence the shapes of rod-
anchored vesicles even in the weak adsorption as shown in
Figure 11a-d. The interactions between rod and membrane
result in the redistribution of chain segments near the vesicle
membrane. With the rod length increasing, the vesicle membrane
near the anchored position is drawn close to the rod and deforms
accordingly. Same as the situation of no interaction between
rod and membrane, the shape deformation relys on the shape
of vesicle, especially the local curvature near the anchoring
position.

3.5. Effect of Bending Rigidity. The bending rigidity of
vesicle is a kind of capability that can resist perturbation and
deformation. For phospholipid membranes, one findsκ ) 10-
40kBT,25 which is high as compared to the thermal energykBT.
The bending rigidity depends on the local heterogeneous
concentration of the species, such as protein molecules on the
blood cells.31 As cytoskeleton, rigid macromolecules can
increase more or less the bending rigidity and then restrain
thermal fluctuations of membrane, as demonstrated by some
experiments.32 The effect of the bending rigidity of the vesicle
without any interaction (η ) 0) is shown in Figure 12. The
deformation of vesicle increases gradually as the bending rigidity
decreases fromκ ) 20 to κ ) 5. Note that the vesicle with
large bending rigidity can resist extra inhomogeneous entropic
pressure due to the rod anchoring and only deform slightly.

4. Conclusion

A method combined the self-consistent field theory for rod
with the Helfrich curvature elasticity theory for the membrane
is developed for the rigid rod-anchored vesicles. Both density
distribution of rod segments and deformation of the vesicle are
obtained. It is found that due to the vesicle’s impenetrability
for the rod segments and the decrease of the available space
for the rod orientational configuration, the anchored rod segment
exerts the inhomogeneous entropic pressure on the vesicle, and
the shape of vesicle is transformed. The behavior of vesicle
deformation is different when the rod is anchored outside or
inside of the vesicle. The vesicle is elongated along the axis of
symmetry, and the membrane near the south pole transforms
to be much more flat when the rod is anchored outside. The
vesicle is elongated perpendicular to the axis of symmetry, and
the membrane near the south pole becomes much more steep
when the rod is anchored inside. When the interaction between
the vesicle membrane and the rod segments is weak adsorption,
the anchoring rod not only exerts the inhomogeneous entropic
pressure on the vesicle but also changes the tension of membrane
so that the deformation of vesicle is remarkable. High bending
rigidity of the membrane can resist the extra inhomogeneous
entropic pressure as well as the shape change of the vesicle.
The length of rod barely affects the shape of vesicle atη ) 0.
However, when there are adsorptions between vesicle and rod,
the effect of rod length is enhanced. In addition, the quality of
the solvent scarcely influences the density distribution of rod

segments and the shape of the vesicle due to the fact that the
solvent will never alter the configuration of the rigid rod-like
polymers. The results presented here can provide valuable
insights into some biological process. Meanwhile, it is easy to
extend this method to more complicated and real biological
systems, such as polymers with different topological architectures/
vesicle, multiple chains/vesicle, protein inclusions, etc.
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