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A method combined the self-consistent field theory (SCFT) for the rigid rod with the Helfrich curvature
elasticity theory for the vesicle has been developed for studying the shape of vesicles anchored by rigid rod.

Both the deformation of the vesicle and the density distribution of rod segments can be obtained. Because of

the vesicle’s impenetrability for the rod segments and the decrease of the available space for the rod orientational
configurations, the anchored rod segments exert the inhomogeneous entropic pressure on the vesicle and
induce the change of vesicle shape. The interaction between the rod segments and the vesicle membrane
exerts an extra tension to the membrane. Thus the interaction between the vesicle membrane and the rod

segments, the rod length, and the bending rigidity of vesicle are investigated as the important factors to the

shape transformation of the vesicle and the density distribution of rod segments. This method can be extended

to more complicated and real biological systems, such as polymers with different topological architectures/
vesicle, multiple chains/vesicle, protein inclusions, etc.

1. Introduction segments exert an inhomogeneous entropic pressure on the
vesicle, and the shape of membrane is transformed. Unfortu-
nately, these models ignored the fact that the polymer chain
could also affect the tension of membrane via the adsorption
or repulsion interaction between polymer segment and mem-
brane, and the membrane tension is also known as partly
suppressing or aggrandizing the membrane shape fluctuation.

Membranes and vesicles anchored by polymers provide
simple model systems of biological membranes such as the
plasma membrane of the cell. These biological and biomimetic
membranes consist of a lipid bilayer. The extracellular part of
the cell membrane is decorated by glycolipids and glycoproteins,

which protect the cell against mechanical and chemical attack. In addition, most of theoretical studies are limited to the case

These “ornaments” are usually semiflexible or even rigid . ;
. . of flexible polymer chains anchored on a flat membrane of
macromolecules. The process of budding and fission of cell are .

plausibly induced by these proteins. As a simple model of infinite size. However, for vesicles, due to the closure of the

. . - . embranes, additional effects not present in planar membranes
biological membranes, in recent years, tremendous interest hag" ' P P

been focused on the polymer anchored vesicles. Numerousshow up. Therefore, the theories developed for planar membrane

experiments hae been card aut on the ystem of pobmer 7 1Al be Lsed o nrpret i experinertal esut on e
chain anchored fluid vesicles, and some bio-related processesS P

have been observed such as budding, increnation, pearling,membrane' )
tubulation, coiling, eté:# Recently, we have developed a method that combines self-

Polymers can usually be anchored onto membranes by tWOconsistent-field. theory (SCFT) fqr Gaussian chain and Helfrich
kinds of methods: one is by a lipid anchor that is covalently curvature elasticity theory for fluid rr_1embrar_1e to determlne.the
bound to a water-soluble polymer: the other is by hydrophobic stable and metastable shapes of flexible chain anchored vEsicle.
side groups of the polymer which sticks onto the bilayer with However, for many real cell membranes, the “ornaments” that
physical interaction. For one anchored polymer chain, its overall anchored on the membrane usually are semiflexible or even rigid
loss of conformation entropy arising from the impenetrable macromolecu!es. Therefore, we bglleve that the system of rod-
membrane surface is only a feksT, which is less than the anchorgd vesicle has more bIO|OgIC§| relevance. Although, the
anchoring energy~20 ksT), thus this anchored course can be theoretlcallmeth(.)d developed prev!odélhas also been ex-
easily achieved. For this reason, this kinds of biomimetic system ténded to investigate the deformation of a rod-anchored flat
can be easily investigatéd. membrane of infinite siz& the behaviors of rod-anchored

There are many theoretical methods that have been devoted’esicle still need to be explored.
to study the subtle shape changes of the polymer chains/ In this paper, we would like to extend the method developed
membrane compound system, such as theoretical analysis opreviously’ to the case of rod-anchored vesicle and explore in
Monte Carlo simulation:16 Their results revealed that the detail the rod anchoring induced shape deformation of vesicle.
chain anchoring can induce local inhomogeneity of the bending The paper is organized as follows. In the next section, the model
rigidity and spontaneous curvature of the membrane. In reality, and algorithm for studying the system of rod-anchored vesicle
when the polymer chain comes close to the membrane, thewill be introduced. In section 3, the effects of interaction strength
conformational entropy of the polymer is reduced due to the between the vesicle and the rod, the rod length, the surface
restriction of the available activity space, the anchored chain tension, and the bending rigidity of the membrane on the vesicle
shapes are discussed based on the calculated results. In the last
* Corresponding author. E-mail: ylyang@fudan.ac.cn. section, we draw conclusions and make some remarks.
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psr) = Y=,0[r — Ry, rod density operator agy(r) = fgp
dro(r — Ry()) = / dng /3 dro(r — g — Rin(0, 0)), where

Nr is @ unit vector along the rod axes that can be written as
nr(¢, 0) (¢ € [0, 27) and 6 € [0, x)). It implies that the rod
can freely rotate around the anchored pivot. The partition
function of such a system can be written as

1 Ns _ 0
== /— DR! DR (7 e*ﬂHp[Rp(T)]
nJ f L s f p( )

f DRm(u. U)e_ﬁHRq[Rm(U,U)]e_ﬂHim

[ 012,() + ) = pO(R(0, 0)

R0

f rev, [Ry(u, )] droy(n| (1)

where Vs a constanty = 1/kgT, and/ DR denotes functional
integration over all the configurations of solvents, rod, and fluid
membrane R} and Ry(r) denote the spatial positions of the
(a) solvent moleculei and the segment of the rigid rod,
respectively. Ry(u, v) denotes the spatial position of the
membrane and, v are curvilinear coordinates in the membrane
A [ | surfacer € Vin[Rm(u, v)] or r € Vou{Rm(u, v)] denotes that is
inside or outside the volume enclosed by the vesicle membrane,
@ solvent respectively. The firsd-function ensures the incompressibility
o ~d A o constraint, and the third-function guarantees that the membrane
° is impenetrable by roddi,: denotes the interaction Hamiltonian
v (s) which includes interactions between the rod segments and
solvent molecules and the membrane, etc. HeHge= Vps +
° 8 Vpm + Vsm, Which can be written g§8Vps = y / drpp(r)ps(r) for
o rod/solventVpm= v § dAd(r € A[Rm(u, 2)]) for rod/membrane
o o andfVsm = u [ dAp«(r € A[Rm(u, v)]), wherey andv, u are

° the Flory—Huggins interaction parameters of rod/solvent, rod/
dr membrane, and solvent/membrane pairs, respectideRm(u,
v)] represents the surface of the closed vesicle membrane. The
Hamiltonian of the semiflexible polymer can be writter®as

vesicle

2

RM@|F 1y ., |7R(D)

Np

or

+ = dr

. @)

0 _ 3
N \ — o HP[RD] - 2_b2 0 3‘172
wherel, is the persistent length, ardRy(z)/972 is the local
curvature of the semiflexible chain. A rigid rod is the limit
(b) configuration of semiflexible chain. For a rigid rogiRy(t)/dt
Figure 1. Schematic illustration of one end of a rigid rod with length IS @ constant, anéPR(r)/dz? = 0 and its persistent length>
Npb anchored on an vesicle at< 0, h(r) = 0). (a) 2D illustration, (b) Npb.1%201t is reasonable to assunhlg[Rp(f)] = constant. The

2D coordinate. The vesicle heightrais h(r). ® is the azimuthal angle, Hamiltonian of the vesicle has been proposed by Ou-Yang and
andW is the angle between the tangent to the contour and thés. Helfrich:2

2. Model and Algorithm

The model of a single rod-anchored vesicle is schematically pH
drawn in Figure 1. We assume that the rod can freely rotate
around the pintle at one end of the rod. In the system, there are
ns solvent molecules and a rigid rod with one end anchored to
outside or inside vesicle wall. The rod consists\gfsegments whereH andc, are the local mean curvature and spontaneous
of lengthb. The diameter of the rod and the size of the solvent curvature of the fluid membrane, respectivedys the bending
are also taken to be the unit lendihin general, the thickness  rigidity of the membrane/ can be considered as the tensile
of the lipid bilayer is about 4 npand the lateral size can extend stress acting on the membrane, ag = pout — pin IS the
up to theum range. It is therefore justified to neglect the pressure difference across the membrane.
thickness and to model the vesicle membrane mesoscopically Following the standard procedure of the SC¥by introduc-
as a two-dimensional elastic surface. We assume that theing external auxiliary fieldsw, and ws, which are the self-
membrane is impenetrable to the rod segments. The system ionsistent molecular fields conjugated to the collective densities
assumed to be homogeneous and incompressible with thep, andps, and the Lagrangian multipliegsfor the incompress-
reference density,. Defining the solvent density operator as ibility of the system as well a§ for the impenetrability of the

SRl = S ack ) QARH + 60" + A pp ) DA+

Ap dr (3)

reVin[Rm(uv)]
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membrane, thus eq 1 can be rewritten as

2= [ IRy [ Dp, [ Do, [ Dps [ Doy

f DE f @@e*ﬁ(7{Rm,p5vpp,ws,wp,5,§} (4)
with the free energy functionglF defined as
BT = —In QJlw,l — ngIn Qfw +
S drlxpgp, — wps — o, + Ep, + ps— po)l +
%f AcR_(uy) JARZH + )’ +A$ AcR(uy) GA T

Ap ‘/;EVin[Rm] dr + n-?{AGRm(U,Z/) dApp + CE/;EVin[Rm] drpp (5)

wheren = v — u. In eq 5,Qy{ wp} denotes the partition function

of the single rod in the molecular fietd, with one end anchored

at pointRm(0, 0), Qf ws} is the partition function of solvent
molecules treated as only one spherical segment in the moleculal
field ws. These partition functions can be expressed in the
following forms:

Qfwd = [ dr exp{—w (1} (6)

Qfwy} =
J IR, exp{— jON" drw(Ry(1))} (R,(0) — R(0)) (7)

The partition functionQ, for rigid rod can be easily obtained
without solving the diffusion equation as Gaussian chain, similar
to solvent molecules but to occupy, segments with spatial
orientational dependence.

To obtain the stable or metastable state of the system,
minimizing the free energy with respect pg, ps, wp, ws, &, C,
and results in the following self-consistent equations for the
rod and solvents:

nlb+yxpdr) + &(r) r e AIR,]

w () =1 &+ xpdr) + &) reVi[Ry] (8)
xpr) + &) I € VoulRpl
wdr) = xpur) + &) 9)

pplr) = Qip exp{— [1* dro, (RS — Ry()) (10)

01) = =2 expl ~ 0,1} (11)
p0= Py + 1) (12)
0= VilRo] drpy(r) (13)

and following the standard procedure of the functional
minimization for fluid membrane®, we obtain the shape
equation of the vesicle in the presence of rod:

{Ap + Zpy(r € AR ]) +7nVp,(r € AR} —
2H{A + np,(r € AR D)} + 2%V?H +
Kk(2H + cg)(2H? — cgH — 2K) =0 (14)

wheren-vp(r € A[Rm]) denotes the concentration gradient of

Sun et al.

the rigid rod segments along the normal direction on the
membranen, andK is the Gaussian curvature of the membrane.

Compared with the general shape equation of vesicles without
rod anchoring, eq 15, derived by Ou-Yang and Helfdé&f?

Ap — 20H + 2V?H + 1(2H + ¢)(2H? — ¢,H — 2K) 7 o)
15

the physical implication of eq 14 is manifest. The extra pressure
and tensile stress terms appear in eq 14, which is the same with
the shape equation of the system of Gaussian chain-anchored
vesiclel” The extra pressuréopy(r € A[Rq]) originates from

the reduction of the rod conformation entropy due to the spatial
confinement of the rod by the impenetrable vesicle membrane,
and it can be named as inhomogeneous entropic pressure. This
result coincides with the mean-field analysis by Bickel and
Marqued® for an impenetrable fluid membrane ornamented with
grafted chain. The extra tensile stregs,(r € A[Rm]) comes

from the interaction of the rod segments onto the vesicle

Imembrane, which exerts extra inhomogeneous tensile stress

acting on the membrane. This inhomogeneous tension term
simply reflects that if the membrane adsorbs the chain, it reduces
the tensile stress; thus, the membrane tends to be extended to
decrease the free energy. In addition, the interaction of rod with
the membrane also results in additional pressurevpy(r €
A[Rn]), which also reflects the membrane tends to contact more
rod segments if it adsorbs rod segments.

As shown in Figure 1b, the shape equation can be solved by
using the algorithm of Seifert et al. for an axial symmetric
vesicle?* We use the arclength along the contour and the
azimuthal angle as coordinates. The shape is then determined
by the tilt angleW(s), as defined in Figure 1b. Moreover the
coordinates andh are perpendicular and parallel to the axis
of symmetry, respectively. In the numerical simulations, the box
size is 5x 20 with Ah = 0.05 andAr = 0.05, and sefA7r =
0.05 andb = 0.05. The numerical scheme we used is as follows.
First we guess an initial vesicle shape (such as sphere), and
then the self-consistent eqs-84 are solved to obtaipy(r, h).

The obtainegy(r, h) is then inserted into eq 14 for calculating
the new shape of the vesicle under the influence of the anchoring
rod. These steps are repeated until the convergence conditions
have been reached. Then the thermodynamic stable or metastable
state for the system of rod-anchored vesicle is obtained.
Throughout this paper, the solution of shape equation is obtained
by comparing different energies of possible shapes, and the
shape with local minima energy is selected to be the resulting
one. In addition, because the surface area of vesicle will not
change dramatically in the biological system and experiments,
most of calculations are performed under fixed surface area.
Given fixed surface areaAf) of vesicle, search for the
appropriatel using successive over relaxation method and the
iterative procedure ends with the additive constraintAf
Ao)/A; meeting the convergence conditions. The rod and the
vesicle both have their lengths scales in unitsoand their
energies scales in units of the bending conskaifit so all the
parameters are dimensionless, and it can be transformed back
to the real physical valuesk — «kgT, A — AkgT/b%, Ap —
ApksT/b®, n — nksT/b, y — xksTh?, & — CksT. Throughout

this paper, the chosen parametérsy 1074—10"2kgT/nn¥, «
=1-25gT, » = —0.1to 0.kgT, are all in the reasonable order

of magnitude in real experiment$25.26

It should be noted that the justification for the self-consistent
approximation is that a single chain encounters many more of
its neighbors than itself and therefore exists in a mean field
generated by the presence of its neighbors. In our system, SCFT
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Figure 2. Typical stationary solutions of vesicle anchored by rigid : d
rod outside, including shapes of the vesicle and segment distributiong (c) (d)
of the anchored rod. The shape of the vesicle is represented by thg¢ a0 20
solid curve, and the density of the polymer chain is drawn in gray is]
scale on a logarithmic scale. The radial (horizontal) and height axeq 204
are scaled by\b. In all cases, we ush, = 100,¢c0 =0, = 0,7 = 10
0. (@)x = 15, Ap = 0.0036,4 = —0.027. (b)x = 10, Ap = 0.0024, o 101 = 5
A= —-0.02. (c)x = 3, Ap=0.000721 = —0.0132. (d) =5, Ap= &)
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is assured to be valid, and in this case, a single polymer chair
undergoes a mean field generated by the solvent monomers (e) (f)
membrane, and chain itself. Furthermore, in some cases, forgigyre 4. Typical stationary solutions of vesicle anchored by rigid
example, when the interaction between rod segments androd inside, including shapes of the vesicle and segment distributions
membrane can be ignored, the distribution of rod segment is of the anchored rod. The shape of the vesicle is represented by the
spatially uniform, the density distribution of rod segment and solid curve, and the density of the polymer chain is drawn in gray
thus the vesicle shape can be solved exactly without the SCET.scale on a logarithmic scale. The radial (horizontal) and height axes
In our system, however, due to introduction of the interaction &' scaled byb. In all cases, we ush, = 100,¢ =0, =0, 5 =
A 0. (a)x = 10, Ap = 0.0024,4 = —0.04. (b)x = 15, Ap = 0.0036,4
between _rod and membrane, the spatial distribution of rod will = Zg 6. (€)c = 5, Ap = 0.0012,4 = —0.024. (d)« = 10, Ap =
not be uniform any more, and the rod segment except the anchorp.0024,4 = —0.036. (e} = 2, Ap = 0.00048,1 = —0.0096. (f)i =
touches the membrane transiently, resulting in randomly dis- 2, Ap = 0.00048,4 = —0.008.
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Figure 6. Shapes of the vesicle anchored by a rigid rodk(a) 10.0,
N, = 100,c, = 0, Ap = 0.0024,4 = 0.004,y = 0, 7 = 0. The density

Figure 7. Pearling transition of tubular vesicles due to rod anchoring.
The tubular vesicle shown in the left panel is obtained with param-
eters:k =10,c0=0,x = 0,7 =0, Ap=0.0024 1 = —1.5(Ap/2)?3.

The pearling vesicle in the right panel is with the same parameters,
but a rod with chain lengti, = 100 anchored. The inset depicts the
pore between the bottom pearl and its neighbor.

have 2-fold symmetry, etc. Here, we should mention that, due
to the disturbance of the anchored rod, the shapes usually cannot
be described by a single index of spherical harmonics. Therefore,
in the following we approximately label the shape by its
dominate index of spherical harmonics (ilexyy 2,1 ~ 3, etc.).
In principle, eq 14 has a complete set of solutions for given
parametersA, AP, co, etc.). These solutions of shape eq 14
that are the stationary shapes of vesicle contain local minima
or saddle points in the space of all shapes. In this part, we only
investigate the simplest case = 0 without any interaction
potential (i.e.;7 = 0 andy = 0). As shown in Figure 2, we can
obtain various stationary shapes, for example, oblates, prolates,
stomatocytes, and more complex shapes @, | ~ 4). Figure
3 shows the transformation of vesicle after anchored rod. Note
that due to the local disturbing of the rod, the sphere becomes
unstable and transforms to the shape of starfish. This behavior
has been observed in the system of vesicle formed with SOPC
when PEG-Flu-Chol solution was introduc€dror the other
shapes I( > 2) of vesicle, their shapes are also adjusted
accordingly due to the rod anchoring.

In the real biological systems, some proteins, such as

of the rigid rod is drawn in gray with the logarithmic scale. The shape peripheral proteins, could also exist inside the biological cell

of vesicle is represented by solid curves, and the axis are scaled by,
Ngb. (b) The density profile of the rod along the vertical directions (
= 0). In the inset, the density profiles are drawn in logarithm scale.

tributed touching point. Therefore, in this regard one of the
efficient and popular techniques to obtain the probability
distribution of rod segments is the self-consistent field metho

3. Results and Discussion

membranes. These proteins can affect the shape of biological
membranes either. In this case, vesicle is deformed because the
anchored rod segment exert the inhomogeneous entropic pres-
sure on the inner side of membrane. As shown in Figure 4,
there are various stationary shapes of vesicle also. Similar to

g. the outside anchoring situation, the sphere vesicle becomes

unstable and thus cannot be observed any more; other shapes
(I 2 2) of vesicle are adjusted accordingly. The behavior of
vesicle deformation is different for the same set of membrane

3.1.x = 0 and n = 0. The spherical vesicle are usually parameters when the rod anchored outside and inside the vesicle.
disturbed by temperature and osmotic pressure, and it can takeAs shown in Figure 5, for the starfish shaped vesitle @),
various shapes. According to the index of spherical harmonic the vesicle shape is elongated along the axis of axial symmetry

(), I = 1 denotes spherical vesicle dre 2 denotes that vesicles

h and the membrane near the south pole is adjusted to be more
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Figure 8. Shape of the vesicle anchored by the rigid rod for different interaction parametgh « = 10.0,N, = 100,c, = 0, Ap = 0.0024,y

=0, andi ~ —0.05 is set to keep the area of vesicle to be constant. The shape of the vesicle is represented by solid curves, and the density of the
polymer chain is drawn in gray scale of its shape color map by logarithm scale. The density of rod on membrane near grafted point is drawn on
the right side.

flat when rod is anchored outside. In contrast, the vesicle is Figure 6 shows the shapes of the rod-anchored vesicle and
elongated perpendicular to the axis of symmetryand the the density of rod segment for the case of B. Since the size
membrane near the south pole become much more steep whewf the rigid rod &, = Nyb) is much larger than that of Gaussian
the rod is anchored inside. The intrinsic reasons are that thechain R, = Mb) with the same chain length, the contact
vesicle membrane cannot be penetrated by the rod, and resultinglistance between the rod and the vesicle is also much longer.
in the inhomogeneous entropic pressure exerted on the mem-Due to the rigidity of the rod and the continuity of the vesicle
brane. The final shape of this system is the balance betweencurvature, there is an empty space where no rod segments can
the bending and tension energies of vesicle and the entropicbe found near the anchoring position, as shown in Figure 6.
pressure exerted by the rod. To achieve larger space andThe density of rod segment contacted to the vesicle membrane
maximize the orientational entropy of rod, the vesicle is is much lower than that of Gaussian chain-anchored vesicle.
elongated along the axis of symmethy when the rod is According to the scaling theoA},inhomogeneous pressure was
anchored outside. Due to the same reason, the vesicle ismainly exerted on vesicle near the anchoring position due to
elongated perpendicular to the axis of symméirwhen the highly localized conformation fluctuations of flexible polymers.
rod is anchored inside. No matter if the rod is anchored outside However, in the case of rod anchoring, not all rod segments
or inside, the rod anchoring exerts the perturbation at small could have the opportunity to contact to the membrane and to
length scales and induces local inhomogeneous entropic presexert the entropic pressure on it. As shown in Figure 6, the
sure; the shape of vesicle would adjust and adopt the state ofdensities drop suddenly from the anchoring position and then
lower energy. decay smoothly further away. The density of the rod segments
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Figure 9. Shape of the vesicle anchored by the rigid rod for different interaction parametgh « = 10.0,N, = 100,c, = 0, Ap = 0.0024,y

=0, andi ~ —0.05 is set to keep the area of vesicle to be constant. The shape of the vesicle is represented by solid curves, and the density of the

polymer chain is drawn in gray scale of its shape color map by logarithm scale. The density of rod on membrane near grafted point is drawn on
the right side.

along the orientation of rod is shown in Figure 6b. Note that the spontaneous curvature originated from the anchored polymer
the density of rod segments is exponentially falling with the chain on the outer layer of the vesicle membrane. For a vesicle
exponent of—2 from the anchoring position to the rod end. membrane witlto = 0 andA = —1.5(AP/2)?3, the vesicle can
When there is no any interactions between the vesicle membraneorm an infinitively long tubular with radiusXP/2)~1/3.24 Similar
and the rod, the density of rod segment meets the scalingto experiments, if such a tubular vesicle is anchored by a rod
behavior of with the same parameters, it becomes unstable and transforms
to a shape comprising a chain of pearl with radius close to that
o(r, ) 0 . 1 _ (r2+ W < (pr)z) of .thheboriginal tubular, and each pearl is .con_nected with its
(> + h?) neighbor through a narrow pore, as shown in Figure 7. Because
the spontaneous curvature is a constant( 0) in calculation,
wherer and h represent the space position in the Cy”nder the Change of Spontaneous curvature of vesicle may not be the
coordinate system. only reason for pearling instability, and the in-
Tubular vesicle is common in nature, but it is not an stationary homogeneous entropic pressure originated from the anchored
solution for the case of only considering the elastic enéfgy. rod segment is another plausible reason.
When it is anchored by polymers, polymers will induce pearling  3.2. Effect of y. The Flory-Huggins interaction parameter
instability 1 Tsafrir et al* have observed the pearling of vesicle y between the rod and the solvent does not explicitly appear in
formed with SOPC when dextran was introduced. In their eq 14. However, the distribution of polymer segments will be
opinion, the pearling instability is induced by the altering of affected by the quality of solvent, especially poor solvent.
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Figure 10. Shape of the rod-anchored vesicle for different rod length

N, with 7 = 0.« = 10.0,N = 100, ¢, = 0, Ap = 0.0024,y = 0, and Figure 11. Shape of the rod-anchored vesicle for different rod length

4~ —0.05 is set to keep the area of vesicle to be constant. The densityNp with = 0.« = 10.0,N = 100,co = 0, Ap = 0.0024,y = 0, and
of rod on membrane near grafted point is drawn on the right side. ~ 4 ~ —0.05 is set to keep the area of vesicle to be constant. The density

of rod on membrane near grafted point is drawn on the right side.
Therefore, the interaction parameter implicitly changes the shape
of vesicle through the distribution of chain segments. This has 3.3. Effect of 5. The interaction between rod segment and
been verified for a Gaussian chain-anchored vestdiowever, membrane can be described by a FleHuggins type of
this effect is very small compared to other parameters. For the parametery. In Figures 8 and 9, the shapes of the rod-anchored
rod-anchored vesicle, this effect is even more insignificant since vesicle and the distribution of rod segments are presented for
the rod is rigid and the distribution of the rod segment is almost various interaction strength. # > 0 andy < 0 denote the

not influenced within the reasonable range jf Indeed, repulsion and adsorption interactions, respectively. In the
increasing solventrod exclusive interaction causes a slight following calculation, the surface area of the vesicle is kept
change of the vesicle shape because, in a bad solyentQ), constant. As shown in the insets of Figures 8 and 9, the

the rod prefers to stay close to the membrane. Different from distribution of rod segments is changed when the interaction
the flexible chains, due to the rigidity of the rod, the quality of between the rod and the membrane is switched on. The
solvent barely affects the distribution of rod density, thus its probabilities of the rod segments appearing near the vesicle
effect on the shape of vesicle can be ignored. membrane and the density of rod segment on the vesicle
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Figure 12. Shape of the rod-anchored vesicle for different bending rigidityhe parameters used adg = 100,c, = 0, Ap = 0.0024,% = 0,

andi ~ —0.05 is set to keep the area of vesicle to be constant.

membrane increase with decreasind\ccordingly, the vesicles

Hence, the density of rod segments on the vesicle surface is

adjust its shape to minimize the free energy for the altered much lower than Gaussian chains. Especially, the density near

distribution of rod segments density wher< 0. Wheny < 0,

the anchored position decrease dramatically. One should notice

the density of rod segment on the vesicle surface and thethat, for the case of < 0, the inhomogeneous entropic pressure

inhomogeneous entropic pressdgg(r € AlRy]) increase with
adsorption strengtty|, and the shape of the vesicle changes
remarkably. On the contrary, when> 0, the shape of vesicle
scarcely changes due to the reductiopgf € A[Rq]). More
interestingly, it is found that the effect gfis strongly dependent
on the shape of vesicles (differdit For example, for the case
of | ~ 4 shown in Figure 9b, both > 0 andy < 0 only induce

a very small shape deformation. This is due to the rigidity of
the rod and the character of vesicle shape. For the calse- of
4, the segment density on the membrané, € A[Rn]), is much
lower than the cases &f~ 2 or| ~ 3. This behavior is very
different from the Gaussian chain-anchored vesitBecause

of the rigidity of the rod and the continuity of the vesicle

Cpp(r € A[Rm]) increases and the extra tensile strgpg(r €
A[Rn]) decreases with increasirig|. In addition to that, the
term of yn-vp(r € A[Rn]) usually counteracts the inhomoge-
neous entopic pressure tedpy(r € A[Ry]) for rod-anchored
vesicle. This is another key factor should be taken into account
for the vesicle shape transformation.

3.4. Effect of Rod Length. The effect of rod length on the
vesicle shapes are shown in Figures 10 and 11. In general, with
increasing the rod lengtNyb, the rod will exert the inhomo-
geneous entropic pressure to the vesicle in a larger area.
However, as shown in Figure 184d (I ~ 2, 3), except for panel
d (I ~ 4), the shape of vesicle is barely affected by the length
of rod. It is clear that the effect of rod length is very small

curvature, there is an empty space between vesicle and rodwhen the vesicle membrane near the anchoring point is convex.
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In contrast to that when the vesicle membrane near the anchoringsegments and the shape of the vesicle due to the fact that the

point is concave, such ds~ 4, the orientational entropy is  solvent will never alter the configuration of the rigid rod-like

largerly reduced for longer rod; thus, the shape of vesicle will polymers. The results presented here can provide valuable

be influenced stronger. insights into some biological process. Meanwhile, it is easy to
However, the rod length will influence the shapes of rod- extend this method to more complicated and real biological

anchored vesicles even in the weak adsorption as shown insystems, such as polymers with different topological architectures/

Figure 11a-d. The interactions between rod and membrane vesicle, multiple chains/vesicle, protein inclusions, etc.

result in the redistribution of chain segments near the vesicle

membrane. With the rod length increasing, the vesicle membrane Acknowledgment. We gratefully acknowledge financial
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